Properties of Exponents

Dr. William J. Larson – MathsTutorGeneva.ch

 b^n is pronounced "*b* raised to the *n*th power" or "*b* to the *n*" for short. **Don't** pronounce b^n "*b n*", because "*b n*" is the pronunciation of *b* times *n*.

 n^2 is pronounced "*n* squared"; n^3 is pronounced "*n* cubed".

n is the **exponent** or **power** or **index**; *b* is the **base**.

Examples

 $5^{3} = 5 \times 5 \times 5 = 125$ $y^{6} = y \times y \times y \times y \times y \times y \times y$

Property *	Examples
$1. b^m \times b^n = b^{m+n}$	$2^2 \ 2^3 = 2^{2+3} = 2^5$
$2. (b^m)^n = b^{m \times n}$	$(2^2)^3 = 2^{2 \times 3} = 2^6$
$(b^m)^n = (b^n)^m$ Note: $(b^m)^n \neq b^{(m^n)}$	$(2^3)^5 = (2^5)^3$
$3. \frac{a^m}{a^n} = a^m \div a^n = a^{(m-n)}$	$\frac{x^7}{x^3} = x^{7-3} = x^4$
4. $(a b)^m = a^m \times b^m$	$(2x^2y)^3 = 8x^6y^3$
5. $a^{-n} = \frac{1}{a^n}$	$4^{-2} = \frac{1}{4^2} = \frac{1}{16}$
$\frac{1}{a^{n}} = a^{n}$	$\frac{1}{4^{-2}} = 4^2 = 16$
$\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n$	$\left(\frac{2}{3}\right)^{-3} = \left(\frac{3}{2}\right)^3$
$6. \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$	$\left(\frac{3}{2}\right)^3 = \frac{3^3}{2^3} = \frac{27}{8}$
7. $a^0 = 1$	$3(y^2)^0 = 3$
$8. \sqrt[n]{a} = a^{\frac{1}{n}}$	$\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$
9. $(\sqrt[n]{a})^m = \sqrt[n]{a^m} = a^{m/n}$	$27^{2/3} = (\sqrt[3]{27})^2 = 3^2 = 9$

* Some of these properties are not true for *a* or $b \le 0$, but we will not consider this case.