Inverse Functions

Dr. William J. Larson - https://MathsTutorGeneva.ch/

An inverse function "undoes" whatever its corresponding function does.

$f^{-1}(x)$ should be **pronounced** "*f* inverse of *x*", not *f* minus 1.

Careful, the symbol is confusing: $f^{-1}(x) \neq (f(x))^{-1} = \frac{1}{f(x)}$ = the **reciprocal** of f(x).

f(2) = 3 means that when x = 2, y = 3; $f^{-1}(3) = 2$ means that when y = 3, x = 2.

Examples:

f(x) = Function	$f^{-1}(x) =$ Inverse Function *
x ³	$\sqrt[3]{x}$
<i>x</i> + 2	x – 2
3 <i>x</i>	$\frac{x}{3}$
10 ^x	$\log x$
2 <i>x</i> +3	$\frac{x-3}{2}$

*One could just as well reverse any pair in the above two columns, e.g. listing log x as the function & 10^x as the inverse function.

Finding the Inverse of f(x)

- 1. Replace f(x) by y.
- 2. Interchange *x* & *y*.
- 3. Solve for y.
- 4. Replace y by $f^{-1}(x)$.

Definition of the Inverse Function

<u>Algebraically</u> the definition of the inverse function is: $f^{-1}(f(x)) = x$ or $f(f^{-1}(x)) = x$.

<u>**Graphically**</u> the definition of the inverse function is that the function and its inverse are reflections of each other about the line y = x and that the graphical properties of x and y are exchanged (see below).

The graphical properties of x and y are exchanged:

For $f(x) \& f^{-1}(x)$:

- 1. The *y*-intercept of one is the *x*-intercept of the other.
- 2. The domain of one is the range of the other.
- 3. The vertical asymptote of one is the horizontal asymptote of the other.
- 4. If their graphs cross, they must cross on the line y = x.

Horizontal Line Test

A function can have an inverse **function** only if passes the Horizontal Line Test (HLT), which is that if any **horizontal** line intersects the graph of f(x) in more than one point, then f(x) fails the HLT.

Remember that the Vertical Line Test (VLT) determines whether a relation is a *function*.