The Properties of Logarithms

Dr. William J. Larson - http://MathsTutorGeneva.ch/

The definition of logarithms: $y = \log_a x \iff a^y = x \quad (a > 0, a \neq 1)$

This means that $y = \log_a x$ and $y = a^x$ are inverses.

log_bx is pronounced "log base b of x"

The Natural Logarithm = $\ln x = \log_e x$

ln x is pronounced "el en x". In stands for <u>*n*</u>atural <u>*l*</u>ogarithm. $e \cong 2.718281828459...$

The Common Logarithm: $\log x \equiv \log_{10} x$

Elementary Properties of Logarithms

log _a x laws	Because	log x laws	because	ln x laws	because
$\log_a 1 = 0$	a ⁰ = 1	$\log 1 = 0$	$10^0 = 1$	$\ln 1 = 0$	$e^0 = 1$
$\log_a a = 1$	$a^1 = a$	log 10 = 1	$10^1 = 10$	ln e = 1	$e^1 = e$
$\log_a a^x = x$	$a^{x} \& \log_{a} x$ are inverses	$\log 10^{X} = x$	$10^{\rm X}$ & log x are inverses	$\ln e^{X} = x$	e^{X} & ln x are inverses
$a^{\log_a x} = x$	$a^{X} \& \log_{a} x$ are inverses	$10^{\log x} = x$	$10^{\rm X}$ & log x are inverses	$e^{\ln x} = x$	e ^x & ln x are inverses

The Basic Laws of Logarithms

Law	because
1. $\log_a(u v) = \log_a u + \log_a v$	$a^{u}a^{v} = a^{u+v}$
2. $\log_a\left(\frac{u}{v}\right) = \log_a u - \log_a v$	$\frac{a^u}{a^v} = a^{u-v}$
$3. \log_a u^x = x \log_a u$	$(a^x)^n = a^{xn}$

More rules of Logarithms - in descending order of usefulness!

1.	The Change of Base Formula	5.	$\frac{\log_{b} c}{\log_{d} c} = \log_{d} c$
	$\log_{a} c = \frac{\log_{b} c}{\log_{b} a}, \text{ for any } b, b > 0, b \neq 1$		log _b a log _d a
	log _b a		$a^{\log_b c} = c^{\log_b a}$
	$\log_{a^{y}} a^{x} = \frac{x}{y}$	7.	$\log_a x = \frac{\ln x}{\ln a} = \frac{\log x}{\log a}$
	$\log_a b = \frac{1}{\log_b a}$	8.	$\log_{a^b} c^d = \frac{d}{b} \log_a c = \log_{a^{\frac{1}{d}}} c^{\frac{1}{b}}$
	$a^x = e^{x \ln a}$	9.	$\log_{\frac{1}{a}} x = -\log_{a} x$

Solving Equations with Logarithms & Exponents

 $1. \quad \log_a f(x) = \log_a g(x) \Leftrightarrow f(x) = g(x) \quad , \, a > 0, \, a \neq 1$

2.
$$a^{f(x)} = a^{g(x)} \Leftrightarrow f(x) = g(x)$$
, $a > 0, a \neq 1$

3. $f(x)^a = g(x)^a \Leftrightarrow f(x) = g(x)$ If a is an **even** integer $\neq 0$, f(x) = -g(x) is also a solution.

Log functions and exponential functions are inverses. So they are reflections of each other across the line y = x.

	$y = log_b x$	$y = b^x$			
asymptote	vertical: $x = 0$	horizontal: y = 0			
axis intercept	x = 1	y = 1			