Polynomials

Dr. William J. Larson - http://MathsTutorGeneva.ch/

- Examples of algebraic expressions that are polynomials $3x^2 1$, $9x^3 7x^5 3x^2 + 6.181x 9$, 5, 0.5x, $x^2 \sqrt{3}x + 4$, $-x^3 + \pi x 3$, $5x^3 + 37x^{25} \frac{3}{7}x^2 + 3x 7$
- A **term** is a number multiplied by a variable (or variables) or just a number or just a variable.
- Polynomials are an **algebraic sum** of one or more terms.
- Polynomials are algebraic **expressions**. f(x) = polynomial is an **equation**, specifically a **function**.
- The number in front of the variable is the **coefficient**.
- The **degree** is the power of the highest power term. It is usually called **n**. For an expression to be a polynomial <u>n</u> must be a positive integer or zero.

- The **leading coefficient** is the coefficient of the highest power term.
- Polynomials with one, two and three terms are given special names: **monomials, binomials** and **trinomials** respectively.
- Polynomials are usually written in **standard form**, that is, with the terms arranged with descending powers: $a_nx^n + a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \dots + a_3x^3 + a_2x^2 + a_1x^1 + a_0$. $a_n \neq 0$. All other coefficients could be 0.

Note that the subscript of the coefficient just keeps track of the power of its variable.

The number of terms, the degree & the leading coefficients of polynomials

	Number of terms	Degree = n	Leading Coefficient = a _n
3x ² - 1	2	2	3
$9x^3 - \sqrt{2}x^5 - 3x^2 + 6.18x - 9$	5	5	- \sqrt{2}
$5 = 5x^{0}$	1	0	5
$0.5 \ x = 0.5 \ x^1$	1	1	1/2
$x^2 - 4x + 4$	3	2	1
$-x^3 + \pi x - 3$	3	3	-1
$5x^3 + 37x^{25} - 63x^5 - 96x^2 + 3x - 7$	6	25	37

Examples of algebraic expressions that are <u>NOT</u> polynomials:

					L V	
1	1	$x^{1/2} = \sqrt{x}$	$\sqrt{3x-7}$	sin x	log (x -3)	
Х	$(x-4)^2$	X ^{2/3}	1	2 ^x	$\ln(x^2 - 5x + 2)$	
	x ⁻²	$\sqrt[3]{x}$	$\frac{1}{2}$ 2 2	e ^{x-3}		
			x - 3x + 3	X		

Features of All Polynomials:

- 1. They are **continuous**. That is their graphs have no breaks. That is you can draw their graphs without picking up your pen.
- 2. Their graphs are **smooth**, that is, their graphs have **no sharp bends**.
- 3. The number of "**bumps**" is always less than n and greater than or equal to zero.

The Leading Coefficient Test (LHB & RHB)

The left and the right hand behavior (LHB & RHB) of a polynomial function means what happens to y = f(x) as x becomes very large - either positive (RHB) or negative – (LHB). The LHB & RHB of f(x) is determined by the leading term, that is by the a_nx^n term. As x becomes very large, the polynomial always goes to $y = +\infty$ or to $y = -\infty$. (except for a zero degree polynomial, e.g. y = 4, which is simply a horizontal line) 1. If n is **even**, the LHB & RHB is the same.

- 1. If n is **even**, the LHB & RHB is the same I.e. both are up or both are down.
- 2. If n is **odd**, LHB & RHB is opposite. I.e. one is up and the other is down.
- 3. If $a_n > 0$ as $x \to +\infty$, $f(x) \to +\infty$. That is it goes up.
 - If $\mathbf{a_n} < \mathbf{0}$ as $\mathbf{x} \to +\infty$, $f(\mathbf{x}) \to -\infty$. That is it goes down.

Calculus is needed to determine the actual number.

For example $f(x) = x^3$ has no bumps; $f(x) = x^3 - x$ has 2

bumps. ("Bumps" are also called turning points or turns or

If n is odd, there are an even number of bumps. If n is even, there are an odd number of bumps.

local maxima & minima.)

Four equivalent statements relating, f(x), 0 = f(x), y = f(x) & its graph

- 1. x = a is a **solution** or **root** of the *polynomial equation* f(x) = 0.
- 2. x = a is a **zero** of the *polynomial expression*, f(x).
- 3. (x a) is a **factor** of the *polynomial expression* f(x). Note the minus sign.
- 4. (a, 0) is an **x-intercept** of the graph of the *polynomial* function y = f(x).