Vertical & Horizontal Asymptotes and Limits of Rational Functions

Dr. William J. Larson, MathsTutorGeneva.ch

An **asymptote** is a line that the graph of an equation approaches, but never reaches.

A rational function is a polynomial divided by another polynomial.

Vertical Asymptotes

A function approaches either $+\infty$ or $-\infty$ as x approaches a vertical asymptote.

There is a vertical asymptote at those values of x that make the denominator equal to zero.

Example $f(x) = \frac{x-1}{x+2}$.

There is a vertical asymptote if x + 2 = 0. Therefore the line x = -2 is a vertical asymptote. $f(\mathbf{r})$

Therefore
$$f(x) = \pm \infty$$

	liı	m <i>x</i> –	$\rightarrow -2$							
		/	1			y	 	 	 	
		/			2					
					O		 	 	 	x
 -6		-4	-	2		9 	 2	 4	 6	
					/ -2		 	 	 	
					- 4		 	 	 	

Example $f(x) = \frac{x-1}{x^2-9}$.

There is a vertical asymptote if $x^2 - 9 = 0$. So there is a vertical asymptote if (x - 3)(x + 3) = 0.

Therefore the lines x = 3 and x = -3 are vertical asymptotes.

-					1.3						a				
								-y			1				
					11						9		1		
					3 I	:					a -				
				:	3.4	:					3		:		
					÷										
											સ				
	:			:	11	:	:		:		; I			:	
				:	2.1	:					<u>:1</u>		1		
					11		2				() () () () () () () () () ()				
				*		^	(-				÷}		+		
					1.3	:	5		5		:1		1		
					1 1						1				
					1 1						: \		1		
	1				1 N	1	1		:		: \		1	1	
				*									*		
													1		
					1	~	1		1						
					1		÷~Ω.				÷		÷		
					-				-						
		6	-	4		2		lo 🛛	_	R	1	4	1	6	
			-	-1	÷	-		0		12	i	-		0	
				;	1	:								:	
				<u>`</u>	1	:				: \	1		1		
				÷->		÷				; <u>}</u>	÷		÷		
	:			: \	:	:	:		:	1				:	
1	:			: \	1	:	:		:	:)	:		:	:	
1	1			ι <u>\</u>	1	1	-2		i	1	1		1	1	
				i	1		; -4						1		
F	[(· · · · · · · · · · · · · · · · · · ·				
1				1	1	1					1		1		
1				: 1	1					.	1				
1	:	:		: 1	1	:	1		:	:	:		:	:	:
				i									÷		
1					1	:				- 1	1				
				• 1											
				: (1	:				.	1		:		
							-4								

The graph of a function **<u>cannot</u>** cross a vertical asymptote, because if it did, then it would not be a function.

Horizontal Asymptotes

A horizontal asymptote is a horizontal line that the function approaches as x approaches $+\infty$ or $-\infty$.

A horizontal asymptote is the limit of y = f(x) as x approaches

$$+\infty \text{ or } -\infty, \text{ i.e. } y = \lim_{x \to \infty} f(x).$$

A rational function is of the form

$$f(x) = \frac{a_n x^n + \dots + a_1 x^1 + a_0}{b_m x^m + \dots + b_1 x^1 + b_0}$$

To investigate horizontal asymptotes, the only thing you need to consider is the relative values of **n & m**, the highest powers in the numerator and denominator respectively.

There are three cases:

1. If the power in the denominator is bigger, then the x-axis (y = 0) is a horizontal asymptote.

Example
$$f(x) = \frac{9x^2 - 1}{x^4 + 3}$$
. HA: $y = \lim_{x \to \infty} f(x) = 0$

Since 2 < 4, the line y = 0 is a horizontal asymptote.

2. If the powers are the same, then there is a horizontal asymptote at y equals the ratios of the coefficients of the highest power terms in the numerator and denominator.

Example
$$f(x) = \frac{6x^2}{3x^2 + 1}$$
. HA: $y = \lim_{x \to \infty} f(x) = 2$

Since 2 = 2, the line $y = \frac{6}{3}$, i.e. y = 2 is a horizontal

asymptote.

3. If the power in the numerator is bigger, there is no horizontal asymptote.

The graph of a function can cross a horizontal asymptote. See, for example, the graph of $f(x) = \frac{9x^2 - 1}{x^4 + 3}$ above.