Asymptotes of Rational Functions and Logs

Dr William J. Larson - MathsTutorGeneva.ch

An **asymptote** is a line that the graph of an equation approaches, but never reaches.

A **rational function** is a polynomial divided by another polynomial. (The ratio of two polynomials)

Horizontal Asymptotes of Rational Functions

A horizontal asymptote is a horizontal line that the function approaches as x approaches $+\infty$ or $-\infty$.

To investigate horizontal asymptotes, the only thing you need to consider is the highest powers in the numerator and denominator respectively.

There are 3 cases:

1. If the power in the denominator is bigger, then the x-axis (y = 0) is a horizontal asymptote.

Example $f(x) = \frac{2}{x+3}$.

The line y = 0 is a horizontal asymptote.

2. If the powers are the same, there is a horizontal asymptote at y equals the ratio of the leading coefficients (the coefficients of the highest power terms) in the numerator and denominator.

Example $f(x) = \frac{6x}{3x+1}$. HA: y = 2

Notice that $f(x) = \frac{x-1}{x+2}$ (on the left) has a horizontal asymptote at y = 1.

3. If the power in the numerator is bigger, there are no horizontal asymptotes.

Example $f(x) = \frac{9x^5 - 1}{x^4 + 3}$.

A further complication can be tested.

Example
$$f(x) = \frac{2}{x+3} + 4$$
.

The line y = 0 is a horizontal asymptote of $f(x) = \frac{2}{x+3}$; but the "+4" shifts everything up by 4. So the horizontal asymptote is y = 4.

The graph of a function can cross a horizontal asymptote.

Vertical Asymptotes of Rational Functions

There is a vertical asymptote at those values of x that make the denominator equal to zero.

Example
$$f(x) = \frac{x-1}{x+2}$$
.

There is a vertical asymptote if x + 2 = 0.

Therefore the line x = -2 is a vertical asymptote.

 				<i>.</i>								
 							<i>y</i>			 	 	
			: /:		:	:						
			: /:		:	:						
			. / .									
 			/									
			:/ :									
			e :									
		-			8	: 2						
 	معترين		*		*******					 	 	
						:						
					:	:						
					:	:						
											 _	
			: :		:	:				 		
						: 0						<u>^</u>
	-				-			-	-		-	•
_	6	-	4	-	2		<u> </u>		2	4	6	
							r					
						: /						
			: :			:/						
						:/ o						
 						Y 2						
					: /							
					: 7	:						
					: /	:						
 					<i>J</i>							
			: :		: /	:						
			: 1		: /	:						
					i (
					1	-4						

The graph of a function <u>cannot</u> cross a vertical asymptote, because if it did it would not be a function.

Vertical Asymptotes of Logarithms

A logarithm has a vertical asymptote of where it's argument is zero.

Example $f(x) = \log(x-1)$

There is a vertical asymptote at x - 1 = 0, therefore at x = 1.

