The Trig Functions of the Special Angles

Dr. William J. Larson - MathsTutorGeneva.ch

The IB HL & SL AA (pure) Exam Paper 1 requires the student to know the trig functions of the special angles – the multiples of $\frac{\pi}{2}$, $\frac{\pi}{3}$, $\frac{\pi}{4}$ and $\frac{\pi}{6}$ – without a calculator.

How can you know the trig functions of these angles?

Think about the point (*x*, *y*) where the terminal side of the angle cuts the unit circle. $\cos \theta = x$ $\sin \theta = y$

For the angles which are **multiples of** $\frac{\pi}{2}$ the point is always on one of the axes, so the possible values of x and y are 0, ±1. If one is 0, the other must be ±1 and vice versa.

For the angles which are **multiples of** $\frac{\pi}{4}$, the possible values of x and y are $\pm \frac{\sqrt{2}}{2}$. Both must be $\pm \frac{\sqrt{2}}{2}$.

For the angles which are **multiples of** $\frac{\pi}{6}$ and $\frac{\pi}{3}$, the possible values of x and y are $\pm \frac{1}{2}$ and $\pm \frac{\sqrt{3}}{2}$. If one is $\pm \frac{\sqrt{3}}{2}$, the other must be $\pm \frac{1}{2}$ and vice versa.

The quadrant determines the sign.

Since x is positive in quadrants 1 and 4 so is $\cos \theta$. Since y is positive in quadrants 1 and 2 so is $\sin \theta$.

Make a quick sketch, possibly in your head.

For multiples of $\frac{\pi}{6}$ and $\frac{\pi}{3}$, the drawing needs to be accurate enough to see whether x or y is bigger and then use that $\frac{1}{2} < \frac{\sqrt{3}}{2}$.

From the sketch you can see which one of the above possibilities applies to the given angle.