The Vector Forms of Lines in 3-D

Dr. William J. Larson - http://MathsTutorGeneva.ch/

Cartosian Form of the equation of a Line	Example
Cartesian Form of the equation of a Line	$x(t) = 3 + 4\lambda$
$\frac{x - x_0}{x_1} = \frac{y - y_0}{y_1} = \frac{z - z_0}{z_1}$, where x ₀ , y ₀ , z ₀ , x ₁ , y ₁ and z ₁ are	$y(t) = 5 + 6\lambda$
x_1 y_1 z_1	$z(t) = -2 + \lambda$
scalar constants.	Vector Form of the equation of a Line
(x_0, y_0, z_0) is a point on the line.	$\vec{r} = \vec{a} + \lambda \vec{b}$
$\begin{pmatrix} x_1 \end{pmatrix}$	
y_1 is the direction vector of the line.	or $\begin{pmatrix} x \\ x \end{pmatrix} \begin{pmatrix} x_0 \\ x_1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_1 \end{pmatrix}$
$\left(z_{1}\right)$ Example	$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix} + \lambda \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix}, \text{ where } \vec{a} \text{ is the position vector giving}$
$\frac{x-3}{4} = \frac{y-5}{6} = z+2$	the position of a point on the line at $\lambda = 0$, \vec{b} is a vector <u>parallel</u> to the line (the direction vector of the line) and
Parametric Form of the equation of a Line $x(\lambda) = x_0 + x_1 \lambda$	parameter λ is a variable. (x ₀ , y ₀ , z ₀) is a point on the line. Two lines are parallel if their direction vectors are scalar multiples of each other. In other words $\vec{r_1} = \vec{p_1} + \lambda \vec{d_1}$ and
$ \begin{aligned} y(\lambda) &= y_0 + y_1 \lambda \\ z(\lambda) &= z_0 + z_1 \lambda \end{aligned} $	$\vec{r}_2 = \vec{p}_2 + \mu \vec{d}_2$ are parallel, if
$2(\lambda) - z_0 + z_1 \lambda$ Where parameter λ is a variable and x_0 , y_0 , z_0 , x_1 , y_1 and z_1 are scalar constants.	$\vec{d}_1 = k \vec{d}_2$ for some scalar k.
(x_0, y_0, z_0) is a point on the line.	
$\begin{pmatrix} x_1 \end{pmatrix}$	Example
$ \begin{pmatrix} y_1 \\ y_1 \\ z_1 \end{pmatrix} $ is the direction vector of the line.	$\vec{r} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3 \\ 5 \\ -2 \end{pmatrix} + \lambda \begin{pmatrix} 4 \\ 6 \\ 1 \end{pmatrix}$

Converting Between the Forms

Cartesian Form to Parametric Form and vice versa

To convert from Cartesian form to parametric form, let each term equal λ and solve for x, y & z.

Example: Convert $\frac{x-3}{4} = \frac{y-5}{6} = z+2$ to parametric form. Let $\lambda = \frac{x-3}{4} = \frac{y-5}{6} = z+2$. Therefore $x = 4\lambda + 3$, $y = 6\lambda + 5$, $z = \lambda - 2$.

To convert from parametric form to Cartesian form, solve each equation for λ and set the three resulting equations equal.

Parametric Form to Vector Form and vice versa

This is easy since it just requires adding or removing vector brackets.

Example: Convert

 $x = 4\lambda + 3,$ $y = 6\lambda + 5,$ $z = \lambda - 2$ to parametric vector form. $\vec{r} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3 \\ 5 \\ -2 \end{pmatrix} + \lambda \begin{pmatrix} 4 \\ 6 \\ 1 \end{pmatrix}$ **Cartesian Form to Vector Form and vice versa** It is easy to convert either of these forms to parametric form and then to the other form, but one can just convert directly.

$$\frac{x - x_0}{x_1} = \frac{y - y_0}{y_1} = \frac{z - z_0}{z_1}$$
 is the same as
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix} + \lambda \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix}$$

Example:

$$\frac{x-3}{4} = \frac{y-5}{6} = z+2$$

is the same as
$$\vec{r} = \begin{pmatrix} 3\\5\\-2 \end{pmatrix} + t \begin{pmatrix} 4\\6\\1 \end{pmatrix}.$$

Careful! The coefficients of the variables must be 1. **Example:**

$$\frac{3-2x}{4} = \frac{y-5}{6} = z+2$$

is the same as
$$\vec{r} = \begin{pmatrix} \frac{3}{2} \\ 5 \\ -2 \end{pmatrix} + t \begin{pmatrix} -2 \\ 6 \\ 1 \end{pmatrix}$$